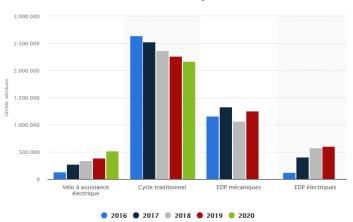


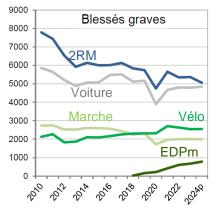
Performances en freinage des nouvelles mobilités et enjeux en sécurité routière

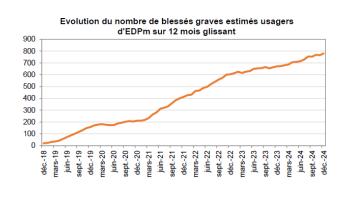
Ebrahim RIAHI

Claire NAUDE, Bastien CANU, Thierry SERRE

Université Gustave Eiffel – Laboratoire Mécanismes d'accidents

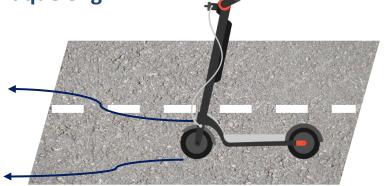






Nouvelles mobilités et sécurité routière

Evolution rapide / Nouvelles interactions / Problèmes de sécurité


Source: ONISR données définitives jusqu'en 2023, données provisoires 2024

Solution : prise en compte des spécificités de chaque engin

Performance en freinage

Adhérence : Texture du revêtement Etat de surface, sec, mouillé, ...

Méthode

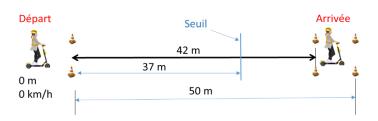
Caractérisation expérimentale

18 Essais de freinage d'urgence

3 Trottinettes (x 3)

2 VAE (x 3)

1 Gyroroue (x 3)


Protocole

- Vitesse de consigne

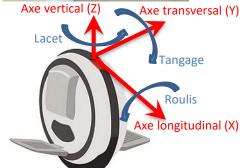
25 km/h en trottinette

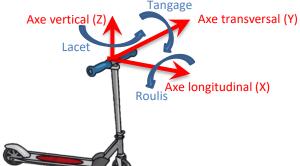
20 km/h en gyroroue

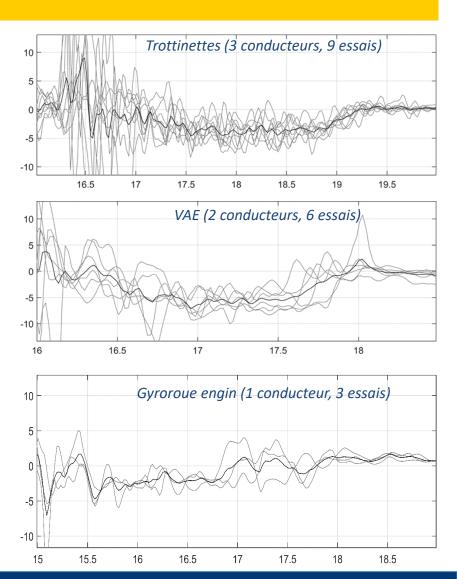
- Stabiliser cette vitesse après le seuil
- Freiner au maximum jusqu'à l'arrêt dans la zone définie par 4 plots

Méthode

Données recueillies

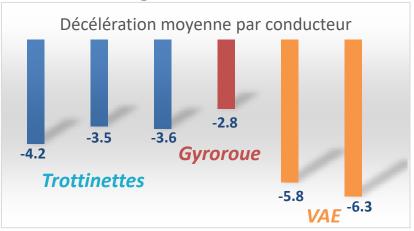

- Vitesse et trajectoire GPS à 1 Hz,
- Accélérations longitudinale, transversale et verticale à 50 Hz
- Vitesses de rotation de roulis, lacet et tangage à 50 Hz
- Vidéo de la scène avant avec 24 i/s résolution 1920x1080




Méthode

Traitement des données

- Filtrage des signaux
- Calcul de l'accélération longitudinale moyenne pendant la phase de décélération constante avant l'arrêt.


Décélération Moyenne Vitesse GPS (bleu) Vitesse Intégrée (rouge) (km/h) 30 20 15 10 0 17 17.5 18 18.5 19 19.5 Accélération longitudinale brute (bleu) Filtrée (vert) Moyenne (jaune) (m/s²) -10 -15 17 20 17.5 18 18.5 19 19.5 Temps (s)

Résultats

Freinage

D -	V_{ini}^2	
$D_T =$	$\overline{2.Acc_X}$	

 $V_{ini} = 25 \, km/h$

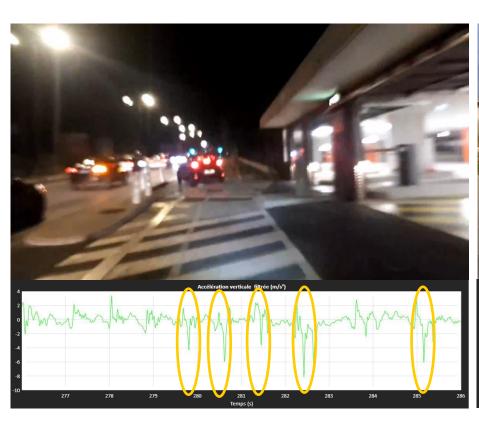
	Décélération (m/s²)	Distance d'arrêt (m)		
VAE	6	4		
Trottinette	4	6		
Gyroroue	3	8		

Voiture / moto ~ 8 m/s²

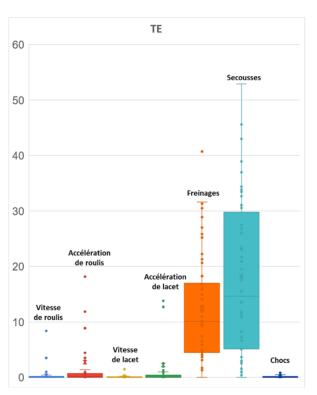
Etude naturelle

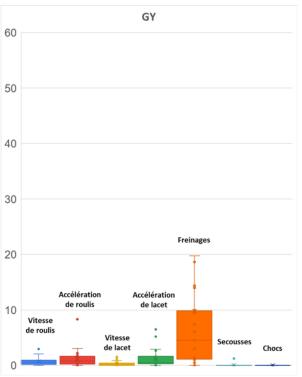
Région PACA	Région AURA	Région IDF	Total
5 gyroroues 24 trottinettes 19 VAE	10 gyroroues 19 trottinettes 20 VAE	10 gyroroues 13 trottinettes 25 VAE	25 gyroroues 56 trottinettes 64 VAE
Total: 48 usagers	Total: 49 usagers	Total: 48 usagers	Total : 145 usage

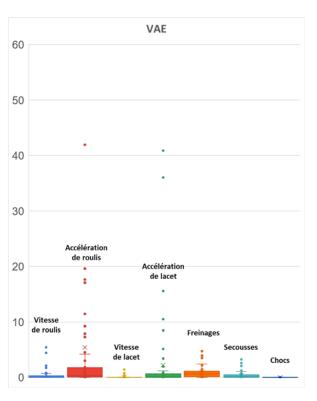
Nb véhicules	145
Nb trajets	8587
Durée totale (h)	2149
Distance totale (km)	34523
Durée moyenne / trajet (min)	15.1
Distance moyenne / trajet (km)	4.0
Situations à risque	907


• Freinage d'urgence des trottinettes en étude naturelle

Secousses des trottinettes sur infrastructures défectueuses

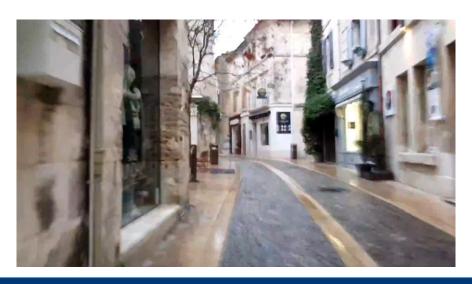



Secousses Secousses



Freinage brusque / Secousse

Nombre par 10 km parcouru



Conclusion / Perspectives

- Caractérisation de la performance de freinage
 - D'autres trottinettes
 - Influence du revêtement (adhérence, texture, sec, mouillé, ...)
- Outil de diagnostic de sécurité pour les EDP
 - Infrastructures inadaptées ou défectueuses
 - Détection des zones à adhérence insuffisante

Merci de votre attention

Ebrahim RIAHI Université Gustave Eiffel ebrahim.riahi@univ-eiffel.fr

