

Impacts sur les infrastructures des poids lourds de 44 t et plus, et des EMS, cas des routes, ponts et dispositifs de retenue

> Mathieu Préteseille, Cerema Bernard Jacob, Université Gustave Eiffel

Dossiers en cours et à venir

PTRA 48 tonnes pour la filière betterave sucrière (étude d'impact réalisée entre 2021 et 2023 - en attente décision interministérielle)

PTRA 46 tonnes pour la filière transport combiné (étude d'impact théorique réalisée en 2022 - en attente lancement expérimentation)

PTRA 44 tonnes pour le transport transfrontalier (étude en cours)

EMS 60 tonnes et 76 tonnes (étude d'opportunité menée par le CGEDD)

IMPACT SUR LES CHAUSSÉES

Notion d'agressivité

Conditions de charge variables

(Silhouette, type d'essieu, charge à l'essieu, pneumatique...)

$Agressivit\acute{e} = \left(\frac{P}{P_{ref}}\right)^{\frac{-1}{b}}$

Essieu de référence

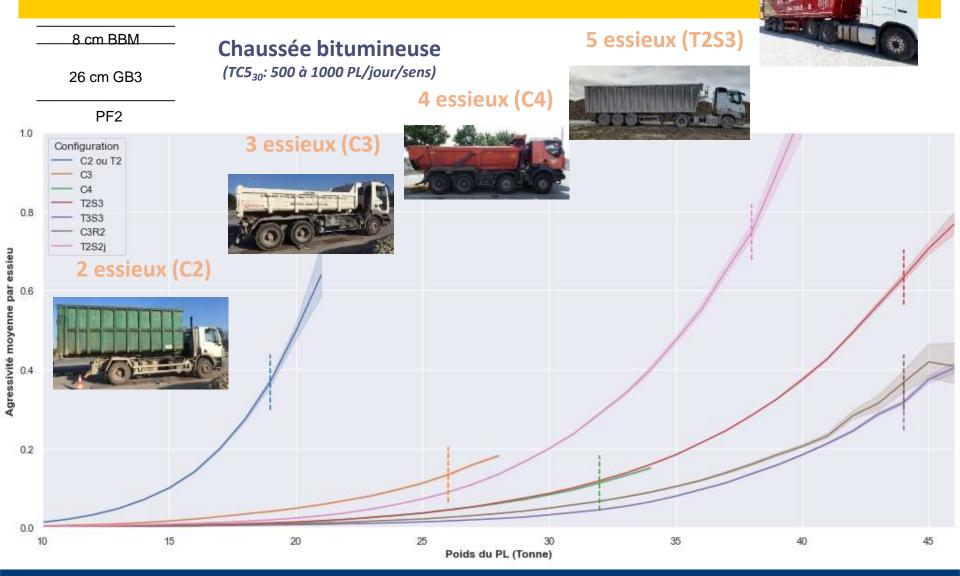
(Essieu isolé à roues jumelées chargé à 130 kN)

Agressivité

Chaussées souples

Déformation verticale du sol support b = -1/4

Chaussées bitumineuses


Déformation en traction à la base de l'assise b = -1/5

Chaussées semi-rigides

Contrainte en traction à la base de l'assise b = -1/12

Agressivité fonction de la silhouette

Passage de 40 à 44 tonnes transport transfrontalier

Rapport au Parlement sur les enjeux et les impacts relatifs à la généralisation de l'autorisation de circulation des poids lourds de 44 tonnes – SETRA - 2011

Conditions de charge:

cas	caractéristique	essieu 1	essieu 2	Tridem (X3)	total
40 t	Poids/essieu (t)	6,052	10,350	7,866	40,000
44 t	Poids/essieu (t)	6,258	11,390	8,784	44,000

Agressivité à la tonne transportée:

GB: Chaussée bitumineuse

GC: Chaussée semi-rigide (grave ciment)

T1: 1000 à 1500 PL/jour/sens

GL: Chaussée semi-rigide (grave laitier)

T3: 100 à 150 PL/jour/sens

R: Chaussée renforcée

PTRA	Agressivité	GBT1	GBT3	GCT1	GCT3	RGBT1	RGBT3	RGLT1	RGLT3
40 t	pleine charg	0,08	0,07	0,07	0,03	0,07	0,08	0,03	0,05
44 t	pleine charg	0,12	0,11	0,22	0,10	0,09	0,10	0,08	0,11
Facteur mul	tiplicateur	1,4	1,5	3,2	3,0	1,4	1,3	2,5	2,5

Passage à 6 essieux en 2014 pour les nouveaux PL et en 2019 pour tous les PL

00

16 t

Agressivité à la tonne transportée

8 cm BBM

8 cm BBM

26 cm GB3

42 cm GC3

EMS 1 (60 tonnes – 7 essieux)

Isolé

12 t

7,2 t

T2S3R2

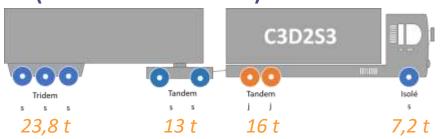
Chaussée semi-rigide (TC5₃₀: 500 à 1000 PL/jour/sens)

PF2

40 t

16%

44 t


-9%

40 t 44 t

24,8 t EMS 1 (60 tonnes – 8 essieux)

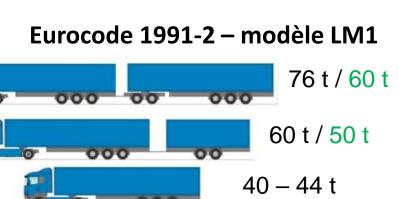
Impact des EMS

-31%

-60%

EMS 2 (76 tonnes – 10 essieux)

-31%

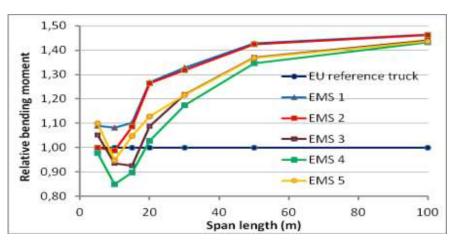


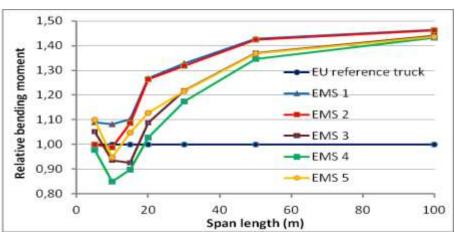
IMPACT SUR LES PONTS

Impacts ponts – travée isostatique 30 m

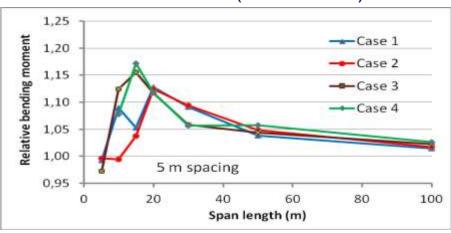
Pont portée = 30 m

Masse lin (kg/m)	Moment flexion mi-portée (kg.m)	Fatigue
2750	4125	
2375	3800 (+30%)	+30%
2376	3600 (+23%)	+35%
2424 - 2667	2930 – 3230 (+10%)	Ш


Référence: T2R3 de 40 t


- Méthode : évaluation des effets critiques (sollicitations) pour différents cas de charge
- Ex.: travée isostatique de 30 m (L_{max} PL), moment de flexion à mi-portée, ou durée de vie en fatigue de détails critiques

EMS 1 – European Modular System - Impacts ponts



EMS seul vs. T2S3

1,10 Ratio of maximum bending moment - 40% of EMS introduced 1,08 → 30% of EMS introduced 20% of EMS introduced 1,06 → 10% of EMS introduced 1,04 1,02 1,00 0,98 20 30 70 80 90 100 Central span length (m)

Trafic avec % d'EMS

2 EMS à 50 m (trafic fluide)

2 EMS à 5 m (congestion)

Conclusions ponts

- Si respect du principe d'augmentation de la longueur et nombre d'essieux avec la charge ⇒ accroissement mesuré de certaines sollicitations pour les portées moyennes (40 à 80 m), de l'ordre de +30%, couvert par coeff. partiels de sécurité (1,35 charges).
- Courtes portées sensibles aux charges élevées sur PL courts (charge linéaire accrue)
- Grandes portées: dimensionnées par les accumulations de PL (congestion)
- Attention aux ouvrages anciens ou partiellement endommagés: capacité portante réduite (Mirepoix) et risque de réduction de durée de vie.

IMPACT SUR LES DISPOSITIFS DE RETENUE ET PILES

Impacts en cas de chocs

- Energie cinétique : E = M.V² pour un corps rigide
- L'énergie cinétique en cas de choc se distribue entre déformation du PL et du dispositif heurté: barrières de sécurité déformables vs piles de ponts rigides
- Pour des PL articulés, l'énergie cinétique de l'élément heurtant (tracteur, remorque ou semi-remorque) et une partie seulement de celle des autres éléments intervient (pliage du PL)
- L'énergie se répartit sur les points d'impact (PL rigide = 1, articulé = 2, double articulation EMS = 3)
 - ⇒ Effets des chocs NON proportionnels à la masse sauf pour PL rigides, faible accroissement pour EMS (essais allemands de 2008-10)

Merci de votre attention

Mathieu Préteseille Cerema 112 rue de Paris 77171 Sourdun 06 67 67 98 52/mathieu.preteseille@cerema.fr