

Planche d'essais du STAC en matériaux recyclés : vers une augmentation des taux d'agrégats d'enrobés dans les chaussées aéronautiques

Pierre QUÉLEN
Service Technique de l'Aviation Civile











## Plan de la présentation

- Contexte
- Objectifs
- Construction
- Caractérisation de la structure
- Fatigue de la chaussée
- Conclusion



## **Contexte**

- Décarbonation des méthodes de construction
- Economie des ressources
- → Action portée par le STAC : mise à jour des guides matériaux







## Contexte

## Travail sur les taux d'agrégats d'enrobés recyclés

|  | Nature de la couche et aire de circulation  Couche de roulement |                      | Taux            | Classes         |                  |                |         |
|--|-----------------------------------------------------------------|----------------------|-----------------|-----------------|------------------|----------------|---------|
|  |                                                                 |                      | d'AE<br>(%)     | TL              | В                | G              | R       |
|  |                                                                 |                      | ]10;<br>20]     | TL <sub>1</sub> | B<br>1           | $G_1$          | R<br>1  |
|  |                                                                 | Voies de circulation | ]10;<br>20]     | TL <sub>1</sub> | B<br>1           | G <sub>2</sub> | R<br>1  |
|  |                                                                 | Accotements          | ]20 ;<br>30]    | $TL_1$          | B<br>1           | $G_2$          | R<br>1  |
|  |                                                                 |                      | ]10 ;<br>20]    | TL <sub>2</sub> | B<br>2           | G <sub>2</sub> | R<br>NS |
|  | Couches d<br>d'as                                               | ]20 ;<br>30]         | TL <sub>1</sub> | B<br>2          | $G_{\mathtt{1}}$ | R<br>NS        |         |
|  |                                                                 |                      | ]30 ;<br>40]    | TL <sub>1</sub> | B<br>1           | $G_1$          | R<br>1  |

**Guide 2009** 

→ Aller plus loin ?

|                             |                    |              | Taux     | Restriction                                                                       |                 |                  | Classe                        | e                                               |   |
|-----------------------------|--------------------|--------------|----------|-----------------------------------------------------------------------------------|-----------------|------------------|-------------------------------|-------------------------------------------------|---|
| Nature couche & aire        |                    | d'AE         | en CT    | TL                                                                                | В               | G                | R                             | F                                               |   |
|                             |                    |              | ]0;10]   | -                                                                                 | TL <sub>1</sub> | $B_1$            | $G_2$                         | $R_1$                                           |   |
|                             |                    |              | ]10;20]  | -                                                                                 | TL <sub>1</sub> | B <sub>1</sub>   | $G_1$                         | $R_\mathtt{1}$                                  |   |
|                             | uche de<br>ulement | Piste et DGV | ]20;30]  | CT1, CT2 et<br>CT3 pour un<br>trafic<br>d'avions du<br>groupe 1 à 3<br>uniquement | TL <sub>1</sub> | $\bar{B}_1$      | $G_1$                         | $R_1$                                           |   |
|                             |                    |              | ju ; 20] | -                                                                                 | TL <sub>1</sub> | $B_1$            | $G_2$                         | R <sub>1</sub> ou R <sub>2</sub> <sup>(2)</sup> |   |
|                             |                    | Circulation  | ]20;30]  | -                                                                                 | $TL_1$          | B <sub>1</sub>   | $G_1$                         | $R_1$                                           | F |
|                             |                    |              | ]0;20]   | -                                                                                 | TL <sub>2</sub> | $B_1$            | G <sub>2</sub>                | R <sub>1</sub> ou R <sub>2</sub> <sup>(2)</sup> |   |
|                             |                    | Accotements  | ]20;30]  | -                                                                                 | TL <sub>1</sub> | B <sub>1</sub>   | $G_2$                         | $R_1$                                           |   |
|                             |                    |              | ]30;40]  | -                                                                                 | TL <sub>1</sub> | B <sub>1</sub>   | $G_1$                         | R <sub>1</sub>                                  |   |
|                             |                    |              | ]0;20]   | -                                                                                 | TL <sub>2</sub> | B <sub>2</sub>   | $G_2$                         | R <sub>NS</sub> <sup>(1)</sup>                  |   |
| Couches de liaison & assise |                    | ]20;30]      | -        | TL <sub>1</sub>                                                                   | B <sub>2</sub>  | $G_1$            | R <sub>2</sub> <sup>(1)</sup> |                                                 |   |
|                             |                    | ]30 ; 40]    | -        | TL <sub>1</sub>                                                                   | B <sub>1</sub>  | $G_{\mathtt{1}}$ | R <sub>2</sub>                |                                                 |   |
|                             |                    |              | ]40;50]  | Jusqu'à CT4                                                                       | $TL_0$          | B <sub>1</sub>   | $G_1$                         | R <sub>2</sub>                                  |   |

**Guide 2024** 



## **Objectifs**

But : augmentation des taux d'agrégats recyclés recommandés si la durabilité et la sécurité sont assurées

Frein: peu de REX sur des chaussées aéronautiques avec de forts taux d'AE dans les couches supérieures

Solution retenue : réalisation d'une planche d'essais par le STAC sur le site de Bonneuil





#### Construction

## **Dimensionnement**

- Méthode rationnelle (Alizé-Aéro)
- Trafic réaliste (avions de code C (type A321neo) à code F (type A380) : 5000 charges RSI à 300kN
- Une aire de type taxiway (vitesse 30 km/h et balayage latéral de 1.00 m )
- Température équivalente 15°C.









## Construction

## Composition de la chaussée

Structure classique issue de la documentation ADP

Roulement : BBA3 0/14D

Base : GB3 0/14 EB

Fondation GNT 0/31,5

• PST: GNT1 0/63



BBA 6cm

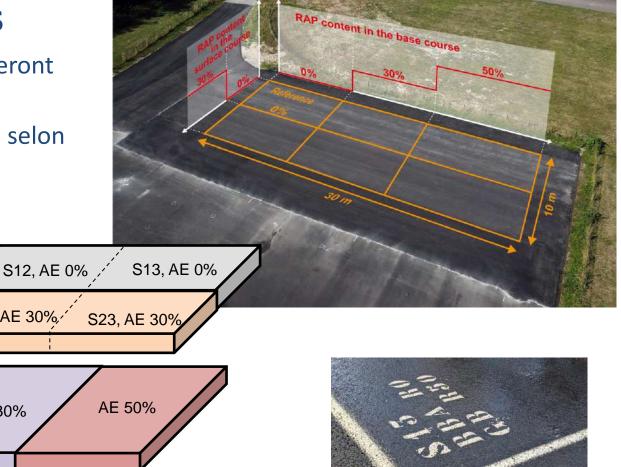
**GB3 14cm** 

GB3 50cm



Plate-forme PF2




**BBA** 

## **Construction**

## Taux d'agrégats

- 6 sous planches qui seront comparées
- Taux d'AE différenciés selon sous-planches

S11, AE 0%





## Construction

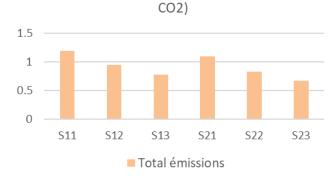
#### Déroulement des travaux

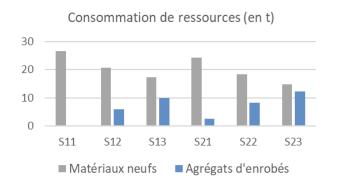
- Génie civil débuté en novembre 2021
- Réalisé par l'entreprise Eiffage Route
- Matériaux
   bitumineux produits
   à la centrale
   Bonneuil Enrobés
- Réception par le STAC au premier trimestre 2022.










Analyse de l'impact environnemental

## Faite avec l'Eco-comparateur SEVE-TP









| Emissions de gaz à effets de serre<br>(comparaison / base) |           |  |  |  |
|------------------------------------------------------------|-----------|--|--|--|
| Planche S11                                                | /         |  |  |  |
| Planche S12                                                | - 21,37 % |  |  |  |
| Planche S13                                                | - 35,54 % |  |  |  |
| Planche S21                                                | - 8,63 %  |  |  |  |
| Planche S22                                                | - 30,76 % |  |  |  |
| Planche S23                                                | - 44,17 % |  |  |  |



## Essais sur la chaussée

#### Nombreux essais effectués... à différents stades de la construction

- Dynaplaque
- Pénétromètre
- LWD
- Gammadensimètre
- Carottages
- Géoradar
- HWD
- Caractérisation de la surface



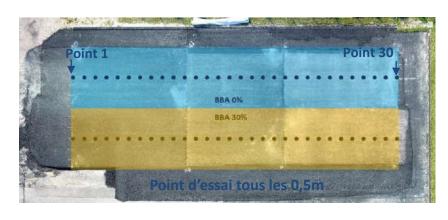




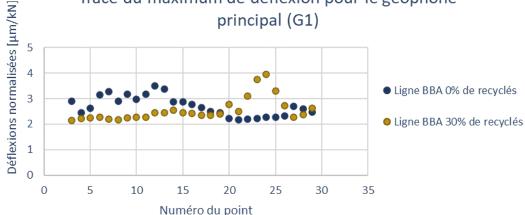









## Exemple de résultats de caractérisation : HWD (1/2)


Mesures de déflexion au HWD

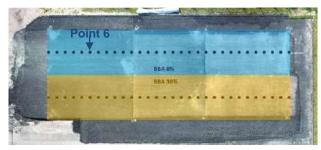
Objectif: connaître l'état « à t<sub>n</sub> » de la planche

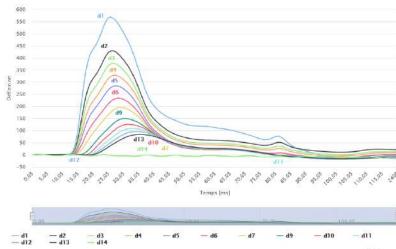




Tracé du maximum de déflexion pour le géophone principal (G1)







## Exemple de résultats de caractérisation : HWD (2/2)

Suite : utilisation de PREDIWARE pour remonter aux modules de matériaux

→ Voir présentation dédiée (par Lucy Travailleur)







<u>Déflexions mesurées pour le point 6 de</u> <u>ligne BBA 0% de recyclés</u>



## Réponse à l'appel à projet FEREC







Projet AERICA (Agrégats d'Enrobés Recyclés Introduits) lauréat 2022

#### Objectifs:

- Augmenter les taux d'AE actuellement recommandés dans les guides STAC
- Promouvoir les structures à fort taux d'AE et inciter à l'emploi de solutions innovantes
- Permettre une réduction des coûts à la fois économiques et environnementaux

#### Caractérisation des matériaux :

- Essais de fatigue → EIFFAGE
- Essais de module → STAC



#### Essais de caractérisation de la GB

Objectif: obtenir une caractérisation des enrobés (ex. module) par différentes méthodologies

Echantillons envoyés à :







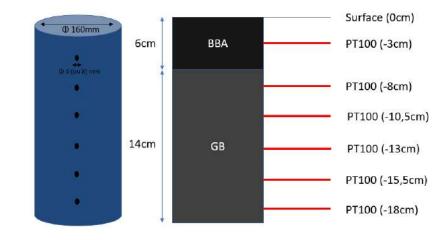


 Réalisé dans le cadre du RILEM Technical Committee on Performance-based Asphalt Recycling (TC 308-PAR)





**Avancement actuel : attente de retour des différents laboratoires** 


A venir aussi : essais de désenrobage séquencé (en développement à l'UGE)



# Instrumentation en température

**Objectif : suivi dans les différentes couches d'enrobé de ce paramètre** 

→ cf. comportement viscoélastique des enrobés bitumineux







Intervenant et titre de la présentation 16



## Fatigue de la chaussée

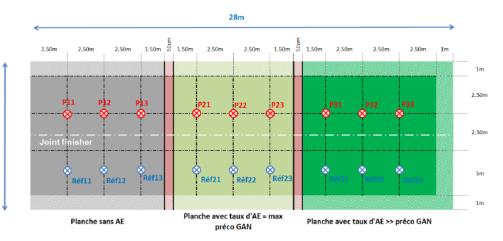
# Objectif: caractériser le comportement des enrobés en fatigue jusqu'à la rupture

- Cycles de chargement/déchargement pour fatiguer la chaussée
- Comparaison des différentes sous planches
- Utilisation de la remorque de portance du STAC








## Conclusion

## **Temporalité**

- Essais sur 6 mois à 1 an pour couvrir toutes les saisons
- Début des essais automne 2024

## **Caractérisation structurelle**

- But : Evaluation régulière de l'évolution de la déflexion et des déformations
- Cycles de fatigue entrecoupés d'essais HWD et relevés de dégradation
- Suivi en température







#### Conclusion

## **Prochaines étapes**

- Début des essais de fatigue sur la planche
- Retour de essais de caractérisation des matériaux en laboratoire

## Conséquences au long terme

→ Possibles évolutions des recommandations du STAC en matière d'utilisation de granulats recyclés (taux recommandés, mise en œuvre, suivi des stocks, ...)



## Merci de votre attention

Pierre Quélen
Service Technique de l'Aviation Civile
31 avenue du Maréchal Leclerc
94380 Bonneuil-sur-Marne
0149568166
pierre.quelen@aviation-civile.gouv.fr

La planche d'essais en matériaux recyclés du STAC pour des chaussées aéronautiques plus durables (vidéo) <a href="https://dai.ly/x8ihoqf">https://dai.ly/x8ihoqf</a>

