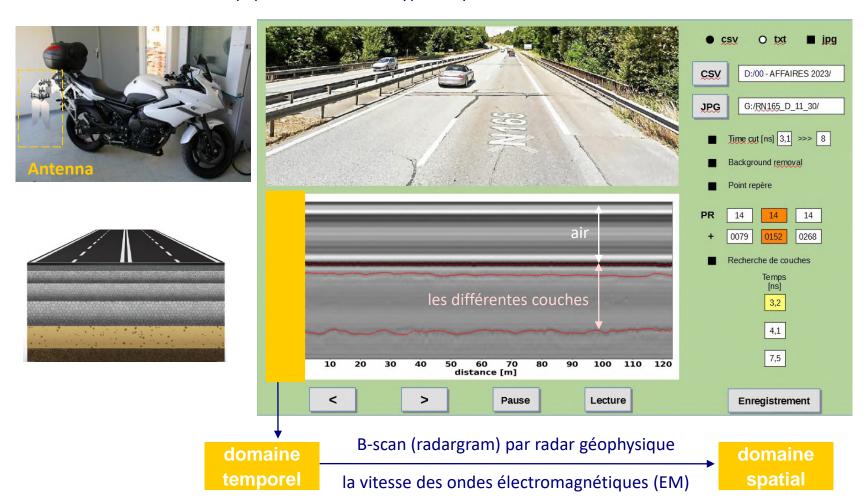
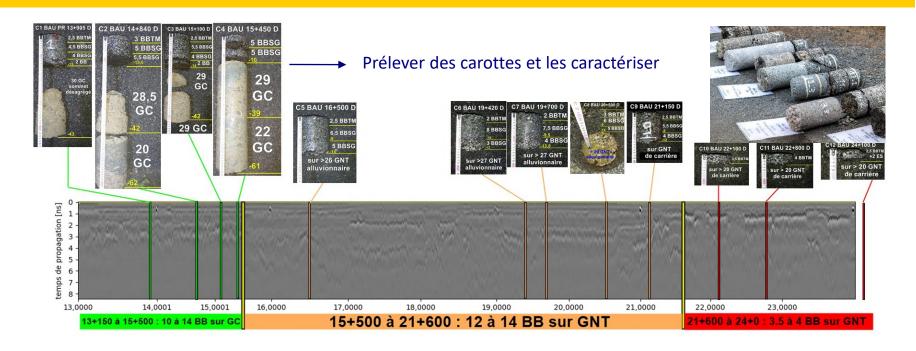


Mesure de la permittivité diélectrique des chaussées par une sonde ouverte

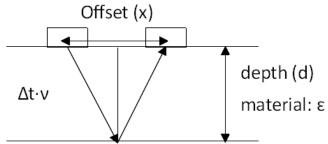
Benhui FAN et Frédéric BOSC

Endsum (Évaluation Non Destructive des StrUctures et des Matériaux) Cerema



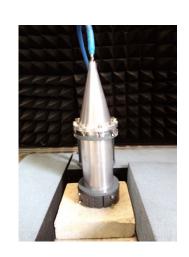

Des multi-couches dans les chaussées

-un deux-roues motorisé équipé d'une antenne hyperfréquence

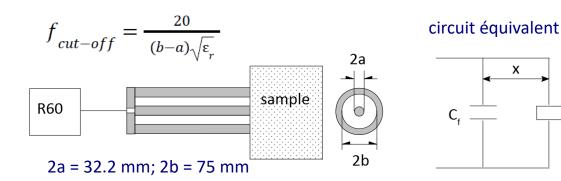


Domaine temporel et spatial

La vitesse des ondes EM dépend de la permittivité diélectrique (ε ,)


$$\left(\frac{x}{2}\right)^2 + \left(d\right)^2 = \left(\Delta t \frac{c}{2\sqrt{\varepsilon_r}}\right)^2$$

Mesurer ε_r de routes \rightarrow estimer l'épaisseur (d)



Mesure en laboratoire

- Sonde ouverte : poser la sonde directement

 \rightarrow mesurer les valeurs $S_{11} \rightarrow$ calculer ε_r^* par la méthode de capacitance

 $\varepsilon_{\rm r}' = 4 \rightarrow f_{\rm cut-off} < 0.47 \, \rm GHz$

calibration: court-circuit, air et PTFE (Téflon)

 $C_0(\varepsilon_r)$

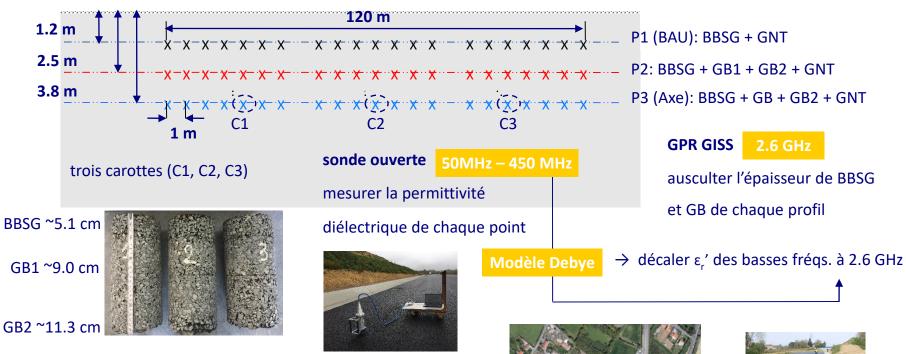
References:

[1] Grant J.P, Clarke R.N., Symm G.T. and Spyrou N.M. A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. J. Phys. E: Sci. Instrum. 1989; 22: 757

[2] Otto G.P. and Chew W.C. Improved Calibration of a large open-ended coaxial probe for dielectric measurements. IEEE Trans. Instrum. Meas. 1991; 40: 742 – 746

[3] Filali B., Boone F., Rhazi J., Ballivy G. Design and calibration of a large open-ended coaxial probe for the measurement of the dielectric properties of concrete. IEEE Trans. Microw. Theory Techn. 2008; 10: 2322 – 2328

[4] Guihard V., Taillade F., Balayssac J., Steck B., Sanahuja J., Deby F. Permittivity measurement of cementitious materials with an open-ended coaxial probe. Constr Build Mater. 2020; 230: 116946.


[5] Fan B. Bosc F. Liu Y. Fauchard C., Dielectric Measurement by Open-ended Coaxial Probe for Hot- Mix Asphalt Roads: from laboratory test to on-site investigation, NDT&E International, 2023, 138, 102872

..

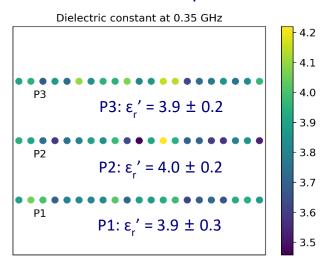
Mesure sur chantier : une route nouvelle

- Trois profils à tester (21 points / profil)

(1) BBSG: béton bitumineux semi grenu

(2) GB: grave bitume

(3) GNT: grave non traitée



Propriétés diélectriques de trois profils

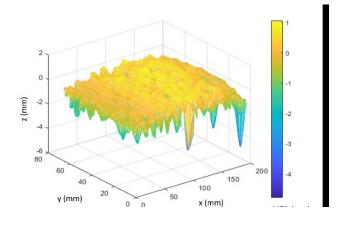
- Constante diélectrique à 350 MHz

1) hétérogénéité de chaussée :

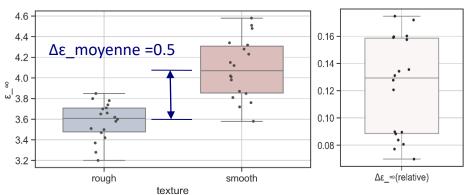
→ compactage, collage, etc

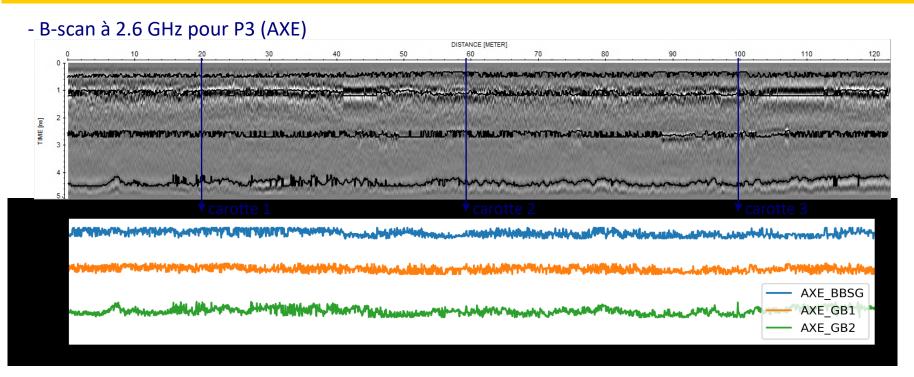
2) problème de contact:

P3: PMT_moyenne = 0.8 [0.65, 1.08]


P2: PMT_moyenne = 0.66 [0.51, 0.87]

PMT: **p**rofondeur **m**oyenne de **t**exture


- Macro-texture de BBSG



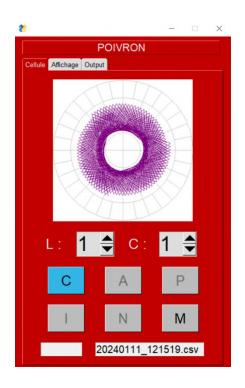
 $\Delta \epsilon$ (absolue) = $\Delta \epsilon$ lis. - $\Delta \epsilon$ rug. $\Delta \epsilon$ (relative) = ($\Delta \epsilon$ lis. - $\Delta \epsilon$ rug.)/ $\Delta \epsilon$ lis.

Estimer l'épaisseur de différentes couches

	carotte 1 (cm)			carotte 2 (cm)			carotte 3 (cm)		
	règle	gamma	radar	règle	gamma	radar	règle	gamma	radar
BBSG	5.3	5.5	5.2 ± 0.2	5.2	4.5	5.86 ± 0.03	5.1	5.0	5.85 ± 0.08
GB1	9.3	8.5	9.7 ± 0.4	8.7	8.0	9.6 ± 0.9	8.8	8.0	8.6 ± 0.4
GB2	10.9	10.5	13 ± 1	11.7	11.5	13.6 ± 0.3	11.1	11.0	13.2 ± 0.7

Conclusions et perspectives

- * Application pour les routes
- la sonde ouverte peut nous donner les permittivités diélectriques de la route
- problème de contact → utiliser la PMT pour améliorer notre résultat
- un indice des propriétés viscoélastiques (ε*) vs module complexe mécanique (G*)
- → le changement d'état physique
- → l'évolution structurale des matériaux (vieillissement...) provoquée par les divers facteurs environnementaux
- * Application pour les ouvrages d'art
- estimation le taux de corrosion des bétons armés
- * Application aux sols
- détermination la teneur en eau dans les sols


Développement en cours

POIVRON: Prototype utilisant une sOnde diélectrique ouVerte piloté(e) par smaRtphONe

- Maquette permettant la mesure diélectrique sur chaussée, parement d'ouvrage, ...
- Pilotage d'un radar à sauts de fréquences depuis un smartphone
- Objectif : Matériel à l'usage des équipes de recherche et des équipes opérationnelles du cerema
- Échelle de maturité de la technologie :
 - Franchissement de la « vallée de la mort » : phases 4 à 7
 - → développeur, chercheur et spécialiste métier
 - Intégration du prototype dans un système industriel complet :phases 8 à 9
 - \rightarrow DPPN (*)

(*) DPPN: Département Prototypes et Projets Numériques du Cerema

Merci de votre attention

Coordonnées Intervenant : Benhui FAN, Frédéric BOSC et Cyrille FAUCHARD

Organisme: Endsum (Évaluation Non Destructive des StrUctures et des Matériaux) Cerema

Mél: benhui.fan@cerema.fr

frederic.bosc@cerema.fr

cyrille.fauchard@cerema.fr

Remerciements

Dominique PINEAU, Martial MENARD,

Sylvain NGUYEN, Olivier LAINÉ,

Vincent DANIEL, Pierre BRISSET,

David CHAUVET et Vincent BOUCHER

Endsum-Cerema