

Poster Session

February 7 and 8, 2024

Nantes Congress Center

Exploring the Tire-Rail Friction: Towards a Safer 'Ferromobile' Transport Solution

Ph.D. student: Bilel JEBALI (bilel.jebali@univ-eiffel.fr) Supervised by: Manuela GENNESSEAUX, Malal KANE Ph.D. thesis: February 2023 - February 2026

Introduction

- Understanding the mechanisms behind the tire/rail friction generation.
- Optimizing rail surface texture to optimize that friction.
- Providing recommendations for tire selection, surface maintenance and driving strategies in FERROMOBILE

Objectives

This thesis is a component of the **FERROMOBILE** project, which endeavors to modify passenger vehicles for dual rail-road usage [1], [2], [3].

systems.

Materials and Methodology

Step 1: Surface cartography

Step 2: Friction test (pin-on-disk) using tribometer

Step 3: Application of parameters correlation and Principal Component Analysis (PCA)

With model parameters to be identified from steps 1 and 2.

Methodology:

Test Conditions: $F_N = 24 \text{ N}$, Rot. = 60 rpm, R = 23 mm.).(

rotation

- **Protocol 1 (P1):** Single wetting at the beginning of the test (application of water jets on the sample).).(
- **Protocol 2 (P2):** Wetting at the beginning of the test, then wetting every two minutes.).(
- **Protocol 3 (P3):** Greasing, wetting at the beginning of the test, then wetting every two minutes.).(

Samples with grooves

rubber

Samples without grooves

Results

Conclusions and Perspectives

contact conditions.

- The COF of the rails can be optimized by modifying the surface texture in specific areas, such as level crossings or stopping stations, by applying a shot peening process. optimization will significantly improve braking This distances, thereby ensuring the safety of individuals.
- Introducing a fourth protocol (P4) with a continuous water <u>) ک</u>رد flow over the sample surface throughout the test to enhance water film control.
- Correlating surface texture parameters with the COF in the).(perspective of underlining the most influential parameters.

Bibiliography

[1] https://ferromobile.fr/la-ferromobile/

wet contact conditions.

[2] Khelifi, C., Do, M. T., Kane, M., & Meyer, M. A. (2017). Wear and wet friction of steel tracks for rubber-tired metros. Wear, 376, 1912-1918. [3] Gómez, M. C., Gallardo-Hernandez, E. A., Torres, M. V., & Bautista, A. P. (2013). Rubber steel friction in contaminated contacts. Wear, 302(1-2), 1421-1425.

