

Modulus from Deflection Velocity Measurement ?

2 TSDDs: Network-level of PMS

measurement interpretations prove impractical

IV. Cost-effective for projects and networks

**Continuous bearing capacity Assessment** Measurement at traffic speed (80 km/h)

TSD overcomes FWD limitations, but current

III. Secure with no traffic disruption

A. ABDELMUHSEN<sup>1</sup>, J-M. SIMONIN<sup>1</sup>, F. SCHMIDT<sup>2</sup>, A. IHAMOUTEN<sup>1</sup>



<sup>1</sup>MAST-LAMES, <sup>2</sup>MAST-EMGCU - Université Gustave Eiffel

AI-based Model for the Estimation of Pavement Elastic

## Challenges: EU's Road infrastructure

Deteriorating roads, limited budgets, insufficient data for maintenance planning & investment strategies



road transport (Top sector in Greenhouse gases)

☐ Efficient road infrastructure management needs

## automated assessments and reliable indicators

Forward to inverse Model

Modulus value E

Strain Gauge+Alize Matrix Y:  $320 \times 1 = 320$ 

 $Y_{21}$ 

 $T_{3201}$ 

Global Experimental Forward Model Matrix G:  $320 \times 8 = 2560$ 

Geophone Deflection velocity Slope  $DV_S$ :

Matrix X:  $320 \times 7 = 2240$  $x_{15}$ 

PCA: Dimensionality Reduction

Matrix T:  $320 \times 2 = 640$ 

Local Experimental Forward Model

Matrix L:  $320 \times 3 = 960$ 

SVM Model:

SVC Classification & SVR Regression

Hyper-parameter Tuning

**Evaluation Metrics** 

Modulus Estimation

 $T_{21}$  $T_{22}$ 

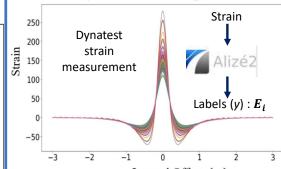
 $T_{3201}$  $T_{3202}$   $x_{16}$ X17

 $x_{26}$  $x_{27}$ 

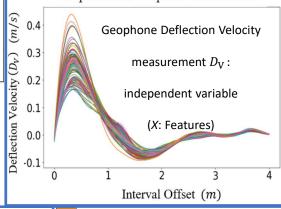
 $x_{25}$  $x_{24}$ 

 $x_{3203}$   $x_{3204}$   $x_{3205}$   $x_{3206}$ 

Methodology:


 $x_{12}$  $x_{11}$ 

 $x_{21}$  $x_{22}$  $x_{23}$ 

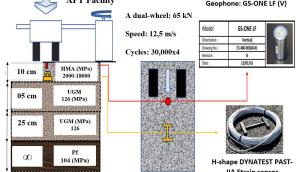

 $x_{13}$  $x_{14}$ 

## Forward Model construction: **Experimental Database**

a. Experimental Strain Gauge Measurement

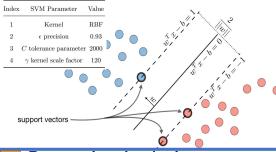


Interval Offset (m) b. Experimental Geophone Measurement

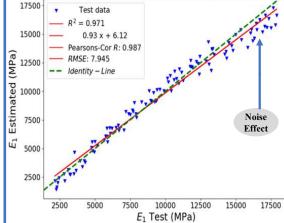



# Objective: AI (ML) + $TSD(D_V)$

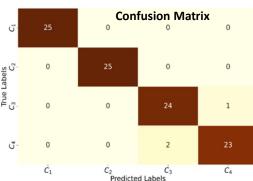
Development and Implementation of (AI + TSD) model to estimate pavement elastic modulus from deflection velocity measurement


APT Facility

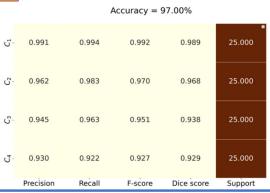
Geophone: GS-ONE LE (V)




#### ML Model: SVM (SVC & SVR) 6


Unlike conventional methods, ML models provide superior accuracy, computational efficiency, and generalization




## Regression Analysis



# 8 Classification Analysis



### 9 Evaluation Metrics



## 10 Conclusion & Perspectives

- This research is among the first studies that have been developed to showcase AI/ML Efficiency in estimating pavement structural conditions using deflection velocity data (TSD)
- Sensitivity analysis has accounted for factors such as measurement noise, temperature, datasize, other layers  $(E_i)$  value uncertainty...
- iii. For generalizability, future research could incorporate TSDDs measurement data from France territory, as the model could be applicable to it

\*A. ABDELMUHSEN, J-M. SIMONIN, F. SCHMIDT, D. LIÈVRE, A. COTHENET, A. IHAMOUTEN, On the variants of SVM method for the estimation of soil elastic modulus from TSD model: Numerical parametric study, Transportation Engineering, Volume 13, 2023, 100187, ISSN 2666-691X, https://doi.org/10.1016/j.treng.2023.100187









Scan: e-POSTER

