

Matériaux bitumineux Comparatifs des caractéristiques mécaniques mesurées en laboratoire avec celles mesurées sur chantier

Capitalisation de l'expérience des entreprises routières

Marc CHIAVASSA ROUTES DE FRANCE

Préambule

- Dernières études comparatives menées courant des années 2000
- Publiées dans "Manuel LPC d'aide à la formulation des enrobés"

Depuis:

- Évolution des formulations et modes de fabrication
 - Augmentation des taux d'Agrégats d'Enrobés recyclés
 - Abaissement des températures de fabrication
- Contractualisation par certains donneurs d'ordres de clauses techniques basées sur la mesure des caractéristiques mécaniques des produits prélevés en phase chantier
- Peu de publications sur ce thème

La base de données

- Base constituée sous l'impulsion de RDF, par remontée d'expériences d'études comparatives Laboratoire/Chantier des entreprises affiliées, sur la période 2010/2017
- Complétée par des résultats de suivis issus du PN MURE

- L'étude comparative porte uniquement sur :
 - les MODULES de RIGIDITÉ (E)
 - Les TENUES a la FATIGUE (Epsilon 6)
- Les indicateurs étudiés sont les ratios Chantier/Laboratoire :
 - Module Chantier / Module Étude de référence
 - Fatigue Chantier / Fatigue Étude de Référence

Composition de la base de données

41 Formules	46 Couples laboratoire chantier	Types de produits bitumineux	Modes de fabrication	Types centrales de production	Z Types d'études de référence	Types de contrôles post production	Types d'essais pour mesure module	Type d'essai pour mesure fatigue	8 Taux de recyclage d'AE
41 (2010 à 2017)	46 (2010 à 2017)	BBSG (13)	Chaud	Continue équicourant	Étude de formulation initiale	Sur production chantier avec confection en laboratoire	Flexion sur éprouvettes trapézoïdales (2 PB-TR)	Flexion éprouvettes trapézoïdales (2 PB-TR)	0 % R 10 %
		BBME (16) GB (9)	Tiède additivé	Continue rétroflux	Vérification de formulation avec constituants du chantier	Sur matériaux densifiés prélevés in situ	Traction directe sur éprouvettes cylindriques (DT-CY)		R 20 % R 30 % R 40 % R 50 %
		EME (8)	Tiède mousse	Discontinue			Traction indirecte sur éprouvettes cylindriques (IT-CY)		R 60 % R 70 %

Principe de l'analyse

- Estimation des ordres de grandeurs des dispersions des Modules et Fatigues
- Comparaison aux ordres de grandeurs issus du "Manuel LPC d'aide à la formulation des enrobés", à savoir :

Extrait:

Manuel LPC d'aide à la formulation des enrobés à chaud

– Relations entre résultats de laboratoire et résultats de chantier –

4.5 Synthèse des résultats sur les relations laboratoire-chantier

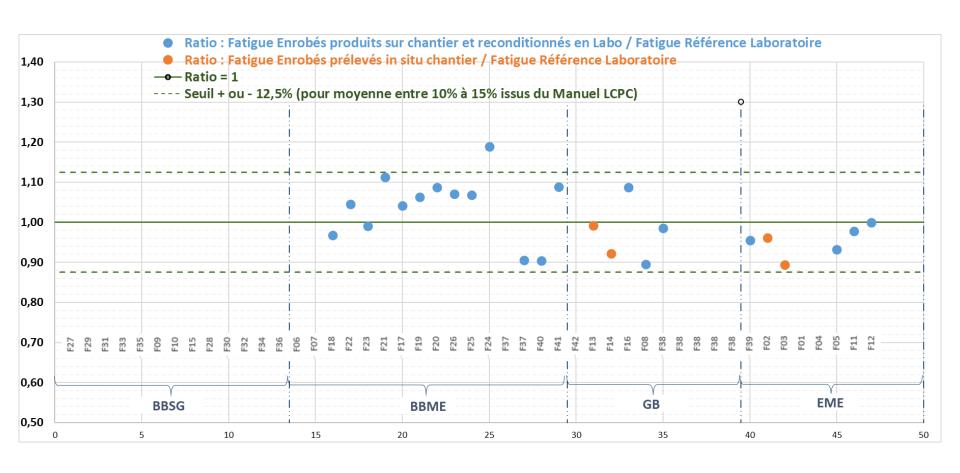
4. Les ordres de grandeurs de dispersion observée sur chantier où les règles de l'art sont correctement respectées sont les suivants :

Compactage à la presse à cisaillement giratoire (PCG) : matériau d'assise ± 2 à 2,5 points, enrobé couche de surface ± 1 à 1,5 points

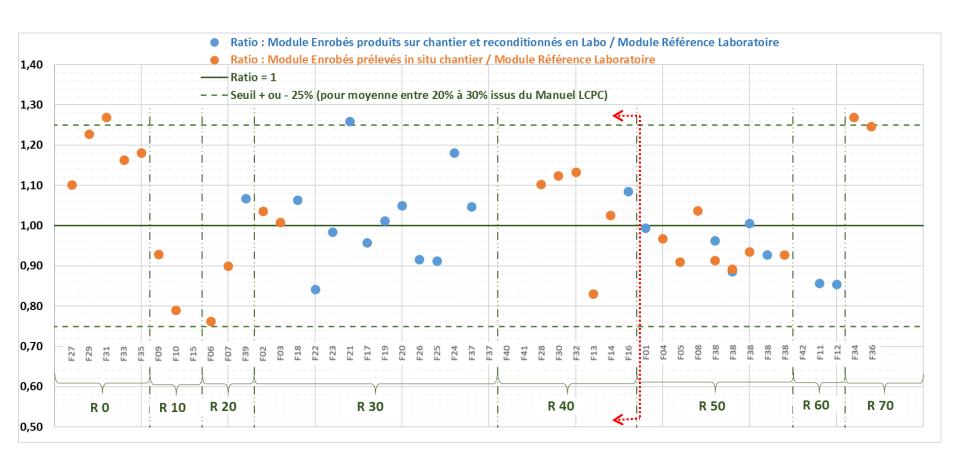
Modules : ± 20 à 30 % Fatigue : ± 10 à 15 %

Orniéreur : environ 2 points pour un matériau peu sensible à l'orniérage (< 5% 30000)

 Identifier l'éventuelle existence de facteurs influençant le niveau de dispersion

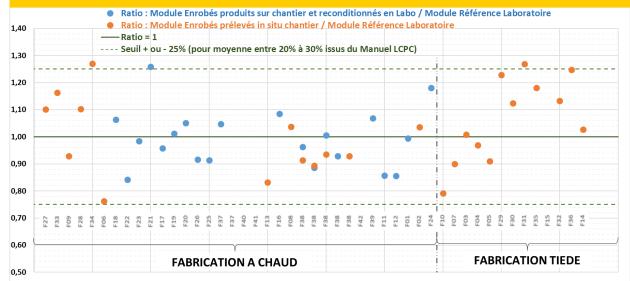


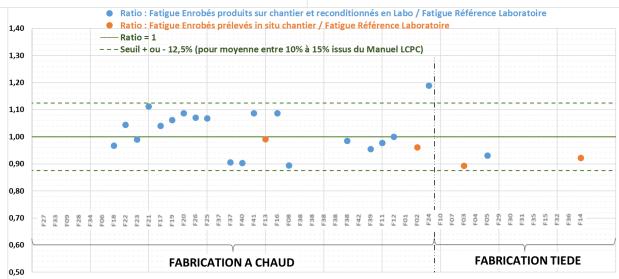
Analyse ratios Module par types de produits

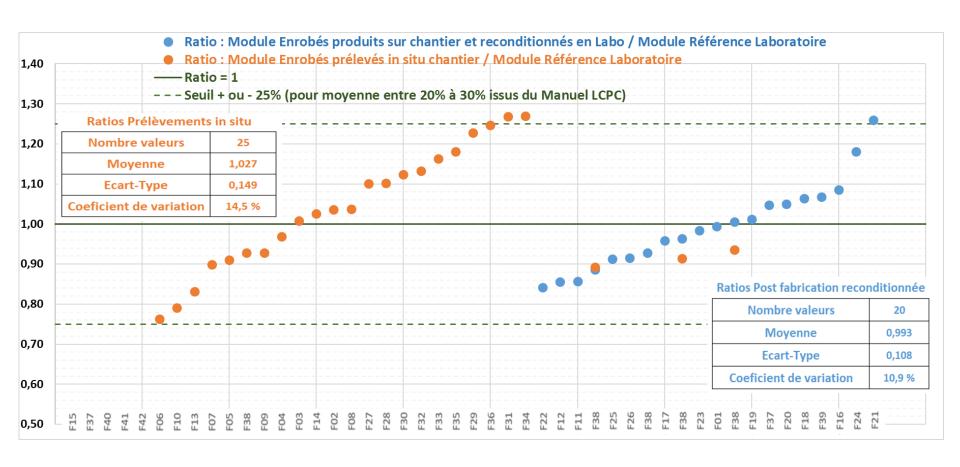


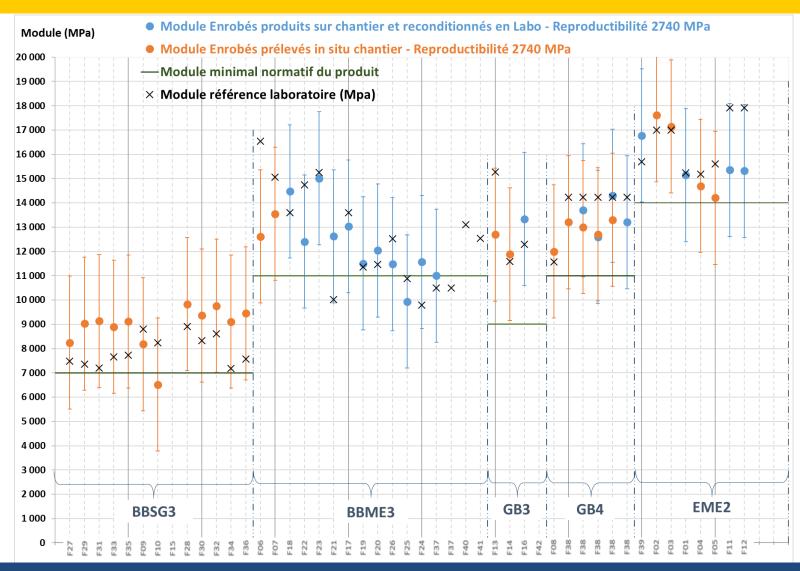
Analyse ratios Fatigue par types de produits

Analyse ratios Module par taux de recyclage d'AE

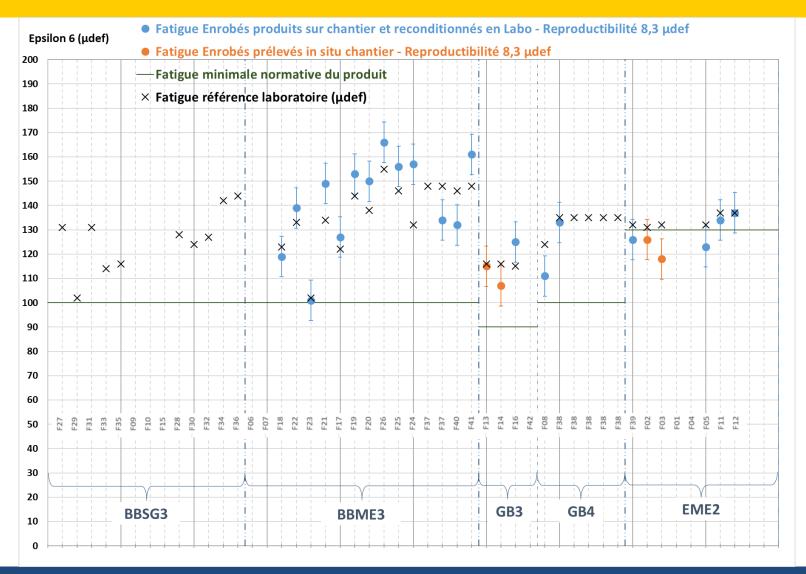



Analyse ratios Fatigue par Taux de recyclage d'AE


Analyse Module et Fatigue par mode de fabrication



Analyse Module par types de contrôle post fabrication



Valeurs brutes Modules (MPa)

Valeurs brutes Fatigues (µdef)

Commentaires

- Dispersions (E et Eps6) semblables à celles du guide LPC (2007)
- Pas de critère significativement impactant la variabilité globale "laboratoire/chantier"
 - Toutefois contrôles post fabrication avec "reconditionnement en laboratoire"
 mieux corrélés qu'avec "prélèvements in situ"
- Variabilité des ratios module et fatigue, homogène pour la plage 0 à 40 % d'AE recyclés
- Caractéristiques mécaniques mesurées post production, supérieures aux valeurs minimales normatives, ou dans la plage de reproductibilité de l'essai, sauf pour 1 valeur sur les 70 (prélèvement in situ)

Conclusions

- Étude significative pour la période 2010/2017 avec grande diversité de cas, 41 produits bitumineux différents.
- L'évolution des formulations (%AE, T° Fab), n'affecte pas la variabilité "Laboratoire/Chantier".
- La méthode rationnelle française de conception et construction des chaussées bitumineuses, fondée sur le double niveau d'exigences, (formulation initiale + maitrise des paramètres de fabrication et mise en œuvre), reste adaptée à l'évolution des modes de production, notamment pour la plage 0 à 40% d'AE.
- Pas de raisons objectives d'y ajouter un troisième niveau d'exigence basé sur des contrôles post fabrication dont les protocoles ne sont pas définis.

Merci de votre attention

Marc CHIAVASSA
Direction Scientifique et Technique NGE
mchiavassa@nge.fr

Sources : Groupe de Travail

